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1. INTRODUCTION

A two-degree-of-freedom (T-d.o.f.) system is the simplest model of a complex discrete
system having multi-degrees of freedom (M-d.o.f.). As is well known, the title system
constitutes an interesting introduction to the behavioural investigation of systems with an
arbitrarily large number of degrees of freedom. Almost every vibration monograph [1}22]
contains an important chapter dealing with a linear T-d.o.f. system. Vibrations of discrete
systems having two degrees of freedom are the subject of many papers, e.g., references
[23}41].
The motion of a T-d.o.f. system is normally expressed by two coupled non-homogeneous

ordinary di!erential equations. Formulation of their exact analytical solutions in a general
form for the system with damping is not easy. Solving, for example the free vibration
problem, the characteristic quartic algebraic equation is obtained. Considering the case of
light damping, one assumes that this equation has four complex roots in the form of two
pairs of conjugate complex numbers. There is no simple direct relation between these
anticipated roots and arbitrary values of the physical parameters characterizing the
vibrating system. The solutions are presented in a basic form by corresponding
combinations of products of decaying exponential and trigonometric time functions. Other
possible solutions for di!erent damping cases are not usually discussed in the literature. The
aim of this work is to perform a full theoretical vibration analysis of a T-d.o.f. system with
arbitrary damping. Such an analysis is possible, and exact analytical solutions can be
determined for a certain simpli"ed linear, viscously damped model whose physical
parameters, namely, masses, viscous damping coe$cients, and spring constants are
assumed to be identical.
In this paper, free and forced vibrations caused by external exciting forces being

arbitrary time functions are investigated and their exact analytical solutions are derived.
While underdamped cases are usually only signi"cant in the study of mechanical vibrations,
it seems that all possible solutions presented in this work give a better understanding
of the vibration phenomena occurring in arbitrarily damped T-d.o.f. system. Moreover,
a T-d.o.f. forced vibration analysis is of great technical importance, because it makes
possible to examine the dynamic vibration absorption phenomenon [1}22] and to
design di!erent types of discrete dynamic vibration absorbers (DDVAs). Problems
of theory, behaviour and applications of DDVAs have been treated by numerous
investigators and many references, e.g., [1, 14, 20, 30}41], are devoted to various concepts
of them.
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.



Figure 1. The physical model of a two-degree-of-freedom (T-d.o.f.) discrete system: (a) classical general model;
(b) simpli"ed model assumed; and (c) model analyzed for free vibrations.
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2. FORMULATION OF THE PROBLEM

The classical general model of a two-degree-of-freedom discrete vibratory system
represented by a spring}mass}damper system is depicted in Figure 1(a). The system is
assumed to be linear and viscously damped. The external exciting forces acting on the
masses are arbitrary time functions. The vibrations of the system under discussion
are governed by the following non-homogeneous ordinary di!erential equations
[5, 7, 11, 12, 21]:
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Equations (1) constitute a coupled system of two ordinary di!erential equations in the
two unknown functions x
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(t) and x
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(t), which is di$cult to solve in a general form, and so

certain simplifying assumptions are made. The theoretical analysis of the vibration problem
is conducted for a simpli"ed system (see Figure 1(b)) when the physical parameters
characterizing the vibrating system, namely the masses, the external viscous damping
coe$cients, and the spring constants are identical as follows:
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Further manipulations give
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It should be noted that introduction of the new variables being the principal co-ordinates
(5, 7, 21), de"ned as
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makes it possible to decouple the di!erential equations (3). Adding and subtracting
equations (4) gives
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It is seen that the equations of motion are uncoupled, and "nally they can be presented in
the following form:
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In equations (9), h
�
and �

�
denote the damping coe$cients and natural frequencies of the

undamped free vibration of the system respectively. Solving equations (8) gives the principal
coordinates y

�
(t). The unknown solutions of equations (3) x
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(t) are then determined from the

relationships
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3. DAMPED FREE VIBRATION ANALYSIS

For the free vibration analysis of the system shown in Figure 1(c), it is assumed that
F
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(t)"0. Thus, the damped free vibrations are represented by general solutions of

the homogeneous equations (8)
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It is well known that these equations have three types of solutions, which depend upon the
value of damping [1}22, 42, 43]. The following cases are usually considered:
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where �
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denotes the damped natural frequency of the system.

An underdamped case (small damping) is important in vibration analysis, because it is the
unique case leading to an oscillatory motion. Solution (12) represents the damped free
harmonic vibration of the system, which is performed with the frequency�
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and amplitude

decreasing exponentially with time.
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For a critically damped case (average damping), solution (13) represents an aperiodic
motion of the system, which reduces to zero with time.
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For an overdamped case (large damping), solution (14) described by an aperiodic time
function characterizes the motion of the system, which reduces exponentially with time.
Formulating solutions (10) for the damped free vibrations of the system x
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(t) and x
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nine possible cases can be identi"ed. They are listed below.
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It is important to note that all parameters shaping the above solutions are explicitly and
directly dependent on the physical parameters characterizing the vibrating system
discussed. Applying particular values of C, c, K, k, m, a proper form of solution can be
determined without di$culty for any case.
The unknown integration constants A

�
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�
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conditions (2). As is well known, a T-d.o.f. system executes two types of free vibrations
(motions): synchronous and asynchronous. The synchronous vibration (a
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coe$cient c and spring constant k. Simplifying assumptions can be introduced that cause
the system to vibrate as a whole without any relative motion between two masses. This
implies that the middle spring is not deformed, and the middle damper does not work. The
asynchronous vibration (a
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"!1(0) corresponds to the second mode shape of vibration.

The parameters characterizing this motion h
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describing the fundamental (synchronous) motion. The displacements of both masses in the
corresponding motions are identical.
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4. DAMPED FORCED VIBRATION ANALYSIS

The damped forced vibrations of the system for the simplifying assumptions are governed
by the non-homogeneous di!erential equations (8) and are represented by their particular
solutions. Three possible forms [3, 6, 7, 42, 43] depending on the values of damping
coe$cients must be considered:
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Setting solutions (6) for the damped forced vibrations of a T-d.o.f. system subjected to
arbitrary exciting forces, nine possible cases can be identi"ed. They are listed below.
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Both above solutions (28}36) for the forced responses and solutions (15}23) for the free
motions are su$ciently versatile and general to allow a simple formulation of solutions for
other particular variants of the system and for exciting forces as they are arbitrary time
functions.

5. ILLUSTRATIVE EXAMPLE

As an illustrative example, the problem of damped free and forced responses of a T-d.o.f.
system is solved on the assumption that c

�
"C"c and k

�
"K"k, which simpli"es the

calculations. Considering expressions (15}23), it is shown that in this case the solutions for
a free motion of types (1a), (2a), (3a), (6a), (9a), (equations (15}17, 20, 23)) can be determined
in "ve intervals depending on the mutual relation between the value of viscous damping
coe$cient c and spring constant k. The damping coe$cients and natural frequencies of
undamped free vibration needed in formulating the solutions and in further analysis are
evaluated from relations (9)
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�
], (38)

where

h
�
"�3(km��)���/3:0)58�(�

�
, h

�
"�3(km��)���"�3�:1)73�"�

�
,

�
��

"(2/3)��� (km��)���:0)82�.

(3a) If c
��

(c(c
��
, c

��
"2(km)���, c

��
"2�3(km)���/3:1)16(km)���, then h

�
(�

�
,

h
�
'�

�
:

x
�	�
(t)"e����[A

�
sin(�

��
t)#B

�
cos(�

��
t)]$e����[A

�
sinh(�

��
t)#B

�
cosh(�

��
t)],

(39)

where if for example c"1)5(km)���,

h
�
"0)75(km��)���"0)75�(�

�
, h

�
"2)25(km��)���"2)25�'�

�
,

�
��

"0)25�7(km��)���:0)66�, �
��

"0)25�33(km��)���:1)44�.
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(6a) If c"c
��
, c

��
"2(km)���, then h

�
"�

�
, h

�
'�

�
:

x
�	�
(t)"e����[A

�
t#B

�
]$e����[A

�
sinh(�

��
t)#B

�
cosh(�

��
t)], (40)

where

h
�
"(km��)���"�"�

�
, h

�
"3(km��)���"3�'�

�
, �

��
"�6(km��)���:2)45�.

(9a) If c'c
��
, c

��
"2(km)���, then h

�
'�

�
, h

�
'�

�
:

x
�	�
(t)"e����[A

�
sinh(�

��
t)#B

�
cosh(�

��
t)]$e����[A

�
sinh(�

��
t)#B

�
cosh(�

��
t)],

(41)

where if for example c"2)5(km)���,

h
�
"1)25(km��)���"1)25�'�

�
, h

�
"3)75(km��)���"3)75�'�

�
,

�
��

"0)75(km��)���"0)75�, �
��

"0)25�177(km��)���:3)33�.

The results obtained show the evident in#uence of the magnitude of damping on the form
of solutions for the damped free vibrations of a T-d.o.f. system. In the case considered, there
are "ve di!erent possible forms of solutions according to the value of the viscous damping
coe$cient c. The masses perform both synchronous and asynchronous component motions
in the damped harmonic vibrations for little damping or aperiodic motions for average and
large damping, and the solutions are the combinations of time functions expressing the
damped harmonic vibrations and damped aperiodic motions. It should be noted that the
in#uence of damping is greater for the asynchronous motion than for the synchronous one.
The asynchronous motion is more strongly damped, since the middle damper does not
work in the synchronous motion, and h

�
'h

�
(9). In this connection, the interval of

existence of damped harmonic vibrations for the synchronous motion is always greater than

that for the asynchronous motion, because c
��

"2(km)���'c
��

"2�3(km)���/3.
The sample problem of damped forced response is solved for a single harmonic force. The

exciting force F
�
(t)"F sin(pt), where F and p are the amplitude and frequency of the

harmonic force, respectively, is subjected to the "rst mass (see Figure 1(b)), and the second
mass is unloaded, i.e., F

�
(t)"0. On the basis of relations (25}27), the particular solutions

y
�
(t) found for the harmonic excitation have the forms

(1) ;ndercritical damping: h
�
(�

�
,

y
�
(t)"H

�
sin(pt)#K

�
cos(pt)#e����[M

�
sin(�

��
t)#N

�
cos(�

��
t)], (42)

where

H
�
"F (��

�
!p�)�m[(��

�
!p�)�#4h�

�
p�]���, �

��
"(��

�
!h�

�
)���,

K
�
"!2Fh

�
p�m[(��

�
!p�)�#4h�

�
p�]���"!N

�
,

M
�
"!Fp(��

��
!h�

�
!p�)�m�

��
[(��

�
!p�)�#4h�

�
p�]���. (43)

(2) Critical damping: h
�
"�

�
,

y
�
(t)"H

�
sin(pt)#K

�
cos(pt)#e����[M

�
t#N

�
], (44)
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where

H
�
"F (��

�
!p�)m��(��

�
#p�)��, M

�
"Fpm��(��

�
#p�)��,

K
�
"!2Fh

�
pm��(��

�
#p�)��"!N

�
. (45)

(3) Overcritical damping: h
�
'�

�
,

y
�
(t)"H

�
sin(pt)#K

�
cos(pt)#e����[M

�
sinh(�

��
t)#N

�
cosh(�

��
t)], (46)

where

H
�
"F (��

�
!p�)�m[(��

�
!p�)�#4h�

�
p�]���, �

��
"(h�

�
!��

�
)���,

K
�
"!2Fh

�
p�m[(��

�
!p�)�#4h�

�
p�]���"!N

�
,

M
�
"Fp(��

��
#h�

�
#p�)�m�

��
[(��

�
!p�)�#4h�

�
p�]���, i"1, 2. (47)

Applying the above expressions, damped forced responses of the system are formulated in
"ve analogous intervals, as for free motions. The following solutions of type (1b), (2b), (3b),
(6b), (9b), (equations (28}30, 33, 36)) for x

�
(t) and x

�
(t) are obtained in corresponding

intervals with respect to the values of damping coe$cient c:

(1b) If 0(c(c
��
, c

��
"2�3(km)���/3:1)16(km)���, then h

�
(�

�
, h

�
(�

�
:

x
�
(t)"A

�
sin(pt!�

�
)

#0)5�e����[M
�
sin(�

��
t)#N

�
cos(�

��
t)]#e����[M

�
sin(�

��
t)#N

�
cos(�

��
t)]�,

x
�
(t)"A

�
sin(pt!�

�
)

#0)5�e����[M
�
sin(�

��
t)#N

�
cos(�

��
t)]!e����[M

�
sin(�

��
t)#N

�
cos(�

��
t)]�.
(48)

(2b) If c"c
��
, c

��
"2�3(km)���/3:1)16(km)���, then h

�
(�

�
, h

�
"�

�
:

x
�
(t)"A

�
sin(pt!�

�
)

#0)5�e����[M
�
sin(�

��
t)#N

�
cos(�

��
t)]#e����[M

�
t#N

�
]�,

x
�
(t)"A

�
sin(pt!�

�
)

#0)5�e����[M
�
sin(�

��
t)#N

�
cos(�

��
t)]!e����[M

�
t#N

�
]�. (49)

(3b) If c
��

(c(c
��
, c

��
"2(km)���, c

��
"2�3(km)���/3:1)16(km)���, then h

�
(�

�
,

h
�
'�

�
:

x
�
(t)"A

�
sin(pt!�

�
)

#0)5�e����[M
�
sin(�

��
t)#N

�
cos(�

��
t)]#e����[M

�
sinh(�

��
t)#N

�
cosh(�

��
t)]�,

x
�
(t)"A

�
sin(pt!�

�
)

#0)5�e����[M
�
sin(�

��
t)#N

�
cos(�

��
t)]!e����[M

�
sinh(�

��
t)#N

�
cosh(�

��
t)]�.
(50)



LETTERS TO THE EDITOR 401
(6b) If c"c
��
, c

��
"2(km)���, then h

�
"�

�
, h

�
'�

�
:

x
�
(t)"A

�
sin(pt!�

�
)

#0)5�e����[M
�
t#N

�
]#e����[M

�
sinh(�

��
t)#N

�
cosh(�

��
t)]�,

x
�
(t)"A

�
sin(pt!�

�
)

#0)5�e����[M
�
t#N

�
]!e����[M

�
sinh(�

��
t)#N

�
cosh(�

��
t)]�. (51)

(9b) If c'c
��
, c

��
"2(km)���, then h

�
'�

�
, h

�
'�

�
:

x
�
(t)"A

�
sin(pt!�

�
)

#0)5�e����[M
�
sinh(�

��
t)#N

�
cosh(�

��
t)]#e����[M

�
sinh(�

��
t)#N

�
cosh(�

��
t)]�,

x
�
(t)"A

�
sin(pt!�

�
)

#0)5�e����[M
�
sinh(�

��
t)#N

�
cosh(�

��
t)]!e����[M

�
sinh(�

��
t)#N

�
cosh(�

��
t)]�,
(52)

where

A
�
"0)5�(H

�
#H

�
)�#(K

�
#K

�
)�, tan�

�
"(K

�
#K

�
)/(H

�
#H

�
),

A
�
"0)5�(H

�
!H

�
)�#(K

�
!K

�
)�, tan�

�
"(K

�
!K

�
)/(H

�
!H

�
). (53)

Particular constantsH
�
,K

�
,M

�
,N

�
can be calculated using relations (43, 45, 47) according to

the value of damping coe$cient c for corresponding intervals.
Each of solutions (48}52) is composed of two fundamental parts. The "rst part

A
�
sin(pt!�

�
), (i"1, 2) represents the steady state forced response of the system, and the

other denotes the damped free vibration or non-oscillatory damped free motion produced
by the application of the exciting force. This part of the harmonic response is transient. The
transient free motion dies out after some time due to damping. Then, the forced vibrations
are established. Finally, neglecting the transient terms in relationships (48}52), the steady
state damped forced vibrations of a T-d.o.f. system can be presented in the following known
form:

x
�
(t)"A

�
sin(pt!�

�
), x

�
(t)"A

�
sin(pt!�

�
), (54)

where

A
�
"

F[(��
�
#��

�
!2p�)�#4(h

�
#h

�
)�p�]���

2m�[(��
�
!p�)�#4h�

�
p�][(��

�
!p�)�#4h�

�
p�]����

,

A
�
"

F[(��
�
!��

�
)�#4(h

�
!h

�
)�p�]���

2m�[(��
�
!p�)�#4h�

�
p�][(��

�
!p�)�#4h�

�
p�]����

,

tan�
�
"

2h
�
p[(��

�
!p�)�#4h�

�
p�]#2h

�
p[(��

�
!p�)�#4h�

�
p�]

(��
�
!p�)[(��

�
!p�)�#4h�

�
p�]#(��

�
!p�)[(��

�
!p�)�#4h�

�
p�]
,

tan�
�
"

2h
�
p[(��

�
!p�)�#4h�

�
p�]!2h

�
p[(��

�
!p�)�#4h�

�
p�]

(��
�
!p�)[(��

�
!p�)�#4h�

�
p�]!(��

�
!p�)[(��

�
!p�)�#4h�

�
p�]
.

A
�
and �

�
(i"1, 2) denote amplitudes and phase angles of the steady state harmonic

vibrations of the system respectively. The form of solutions (54) is valid for the whole
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interval of values of damping coe$cient c. Generally, it is not dependent upon the
magnitude of damping existing in the vibratory system considered.

6. CONCLUSIONS

In this paper, the damped vibration theory of a two-degree-of-freedom discrete system is
developed. A classical linear spring}mass}damper model with arbitrary viscous damping
under certain simplifying assumptions concerning physical parameters characterizing the
system is discussed. Its motion is described by a set of two coupled non-homogeneous
ordinary di!erential equations. The introduction of principal co-ordinates leads to the
decoupling of the di!erential equations of motion. Solving them, exact analytical solutions
for damped free and forced vibrations of the system due to arbitrary exciting forces are
determined without any di$culty. The solutions can have nine possible forms depending on
the mutual relations between viscous damping coe$cients and spring constants. It is
relevant to note that all coe$cients shaping the solutions obtained are explicitly and
directly expressed in terms of the physical parameters characterizing the vibrating system
discussed. Free motions are described by the combinations of time functions expressing
both the damped harmonic vibration (for undercritical damping cases) and damped
aperiodicmotion (for critical and overcritical damping cases). While underdamped cases are
usually only signi"cant in the study of mechanical vibrations, it seems however that all
possible solutions presented in this paper allow a better understanding of the vibration
phenomena occurring in an arbitrarily damped T-d.o.f. system. Moreover, a T-d.o.f. forced
vibration analysis is of great technical importance because of the possibility of its wide
application in the design of di!erent types of discrete dynamic absorbers. General vibration
theory derived here makes it possible to easily "nd solutions for other particular variants of
this simpli"ed system and for arbitrary exciting forces. The results obtained can also be
a base for the formulation of vibration solutions for more general T-d.o.f. system shown in
Figure 1(a), whose motion is governed by the fundamental general equations (1).
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